

Общество с ограниченной ответственностью Инженерный центр «СибМир»

СХЕМА ТЕПЛОСНАБЖЕНИЯ ПОСЕЛКА БОР ТУРУХАНСКОГО РАЙОНА КРАСНОЯРСКОГО КРАЯ НА 2014 – 2018 ГГ. И НА ПЕРИОД ДО 2029 Г.

CM.118623-14.TC

Том 2. Книга 2. Существующее положение в сфере производства, передачи и потребления тепловой энергии для целей теплоснабжения. Источники тепловой энергии

Новосибирск

2014 г.

Общество с ограниченной ответственностью Инженерный центр «СибМир»

УТВЕРЖДАЮ	СОГЛАСОВАНО					
Глава Борского сельсовета	Директор					
Туруханского района Красноярского края	ООО ИЦ «СибМир»					
И.И. Хвостова	А.Ю. Годлевский					
«»2014 г.	«»2014 г.					

СХЕМА ТЕПЛОСНАБЖЕНИЯ ПОСЕЛКА БОР ТУРУХАНСКОГО РАЙОНА КРАСНОЯРСКОГО КРАЯ НА 2014 – 2018 ГГ. И НА ПЕРИОД ДО 2029 Г.

CM.118623-14.TC

Руководитель проекта Д.С. Горюнов
Руководитель группы ТС
О.В. Суяркова

Новосибирск 2014 г.

СПИСОК ИСПОЛНИТЕЛЕЙ

Руководитель проекта	Д.С. Горюнов
Руководитель группы ТС	О.В. Суяркова
Администратор проекта	С.Г. Петренко
Инженер-проектировщик систем ТГиВ	П.В. Мазуренко
Инженер-проектировщик систем ТГиВ	О.В. Фролова
Инженер-проектировщик систем ТГиВ	Т.П. Фендель
Инженер-энергоаудитор	В.А. Небураковский

СОСТАВ СХЕМЫ ТЕПЛОСНАБЖЕНИЯ ПОСЕЛКА БОР ТУРУХАНСКОГО РАЙОНА КРАСНОЯРСКОГО КРАЯ НА 2014 – 2018 ГГ. И НА ПЕРИОД ДО 2029 Г.

- Том 1. Книга 1. Сбор и анализ исходных данных по системе.
- Том 2. Книга 1. Существующее положение в сфере производства, передачи и потребления тепловой энергии для целей теплоснабжения. Функциональная структура теплоснабжения.
- Том 2. Книга 2. Существующее положение в сфере производства, передачи и потребления тепловой энергии для целей теплоснабжения. Источники тепловой энергии.
- Том 2. Книга 3. Существующее положение в сфере производства, передачи и потребления тепловой энергии для целей теплоснабжения. Тепловые сети, сооружения на них и тепловые пункты.
- Том 2. Книга 4. Существующее положение в сфере производства, передачи и потребления тепловой энергии для целей теплоснабжения. Зоны действия источников тепловой энергии.
- Том 2. Книга 5. Существующее положение в сфере производства, передачи и потребления тепловой энергии для целей теплоснабжения. Тепловые нагрузки потребителей тепловой энергии, групп потребителей тепловой энергии в зонах действия источников тепловой энергии.
- Том 2. Книга 6. Существующее положение в сфере производства, передачи и потребления тепловой энергии для целей теплоснабжения. Балансы тепловой мощности и тепловой нагрузки в зонах действия источников тепловой энергии.
- Том 2. Книга 7. Существующее положение в сфере производства, передачи и потребления тепловой энергии для целей теплоснабжения. Балансы теплоносителя.
- Том 2. Книга 8. Существующее положение в сфере производства, передачи и потребления тепловой энергии для целей теплоснабжения. Топливные балансы источников тепловой энергии и система обеспечения топливом.
- Том 2. Книга 9. Существующее положение в сфере производства, передачи и потребления тепловой энергии для целей теплоснабжения. Надежность теплоснабжения.
- Том 2. Книга 10. Существующее положение в сфере производства, передачи и потребления тепловой энергии для целей теплоснабжения. Технико-экономические показатели теплоснабжающих и теплосетевых организаций.

- Том 2. Книга 11. Существующее положение в сфере производства, передачи и потребления тепловой энергии для целей теплоснабжения. Цены (тарифы) в сфере теплоснабжения.
- Том 2. Книга 12. Существующее положение в сфере производства, передачи и потребления тепловой энергии для целей теплоснабжения. Описание существующих технических и технологических проблем в системах теплоснабжения.
 - Том 3. Перспективное потребление тепловой энергии на цели теплоснабжения.
 - Том 4. Электронная модель системы теплоснабжения.
- Том 5. Книга 1. Разработка вариантов перспективного развития системы теплоснабжения. Перспективные балансы тепловой мощности источников тепловой энергии и тепловой нагрузки.
- Том 5. Книга 2. Разработка вариантов перспективного развития системы теплоснабжения. Перспективные балансы производительности водоподготовительных установок и максимального потребления теплоносителя теплопотребляющими установками потребителей, в том числе аварийные режимы.
- Том 5. Книга 3. Разработка вариантов перспективного развития системы теплоснабжения. Предложения по строительству, реконструкции и техническому перевооружению источников тепловой энергии.
- Том 5. Книга 4. Разработка вариантов перспективного развития системы теплоснабжения. Предложения по строительству и реконструкции тепловых сетей и сооружений на них.
- Том 5. Книга 5. Разработка вариантов перспективного развития системы теплоснабжения. Перспективные топливные балансы.
- Том 5. Книга 6. Разработка вариантов перспективного развития системы теплоснабжения. Оценка надежности теплоснабжения.
- Том 6. Обоснование инвестиций в строительство, реконструкцию и техническое перевооружение.
- Том 7. Обоснование предложения по определению единой теплоснабжающей организации.
 - Том 8. Схема теплоснабжения п. Бор Туруханского района Красноярского края.

СОДЕРЖАНИЕ

	Лист
ОСНОВНЫЕ ТЕРМИНЫ И ОПРЕДЕЛЕНИЯ	7
введение	9
ИСТОЧНИКИ ТЕПЛОВОЙ ЭНЕРГИИ	12
СПИСОК ИСПОЛЬЗОВАННОЙ ЛИТЕРАТУРЫ	32

ОСНОВНЫЕ ТЕРМИНЫ И ОПРЕДЕЛЕНИЯ

Теплоснабжение — система обеспечения тепловой энергией жилых, общественных и промышленных зданий (сооружений) для обеспечения коммунально-бытовых (отопление, вентиляция, горячее водоснабжение) и технологических нужд потребителей.

Система теплоснабжения — совокупность источников тепловой энергии и теплопотребляющих установок, технологически соединенных тепловыми сетями.

Схема теплоснабжения — документ, содержащий предпроектные материалы по обоснованию эффективного и безопасного функционирования системы теплоснабжения, ее развития с учетом правового регулирования в области энергосбережения и повышения энергетической эффективности.

Источник тепловой энергии — устройство, предназначенное для производства тепловой энергии.

Базовый режим работы источника тепловой энергии – режим работы источника тепловой энергии, который характеризуется стабильностью функционирования основного оборудования (котлов, турбин) и используется для обеспечения постоянного уровня потребления тепловой энергии, теплоносителя потребителями при максимальной энергетической эффективности функционирования такого источника.

Пиковый режим работы источника тепловой энергии – режим работы источника тепловой энергии с переменной мощностью для обеспечения изменяющегося уровня потребления тепловой энергии, теплоносителя потребителями.

Единая теплоснабжающая организация в системе теплоснабжения (далее — единая теплоснабжающая организация) — теплоснабжающая организация, которая определяется в схеме теплоснабжения федеральным органом исполнительной власти, уполномоченным Правительством Российской Федерации на реализацию государственной политики в сфере теплоснабжения (далее — федеральный орган исполнительной власти, уполномоченный на реализацию государственной политики в сфере теплоснабжения), или органом местного самоуправления на основании критериев и в порядке, которые установлены правилами организации теплоснабжения, утвержденными Правительством Российской Федерации.

Радиус эффективного теплоснабжения — максимальное расстояние от теплопотребляющей установки до ближайшего источника тепловой энергии в системе теплоснабжения, при превышении которого подключение теплопотребляющей установки к данной системе теплоснабжения нецелесообразно по причине увеличения совокупных расходов в системе теплоснабжения.

Тепловая сеть – совокупность устройств (включая центральные тепловые пункты, насосные станции), предназначенных для передачи тепловой энергии, теплоносителя от источников тепловой энергии до теплопотребляющих установок.

Тепловая мощность (далее – мощность) – количество тепловой энергии, которое может быть произведено и (или) передано по тепловым сетям за единицу времени.

ВВЕДЕНИЕ

В современных условиях повышение эффективности использования энергетических ресурсов и энергосбережение становится одним из важнейших факторов экономического роста и социального развития России. Это подтверждено вступившим в силу с 23.11.2009 г. Федеральным законом РФ № 261 «Об энергосбережении и повышении энергетической эффективности».

По данным Министерства энергетики потенциал энергосбережения в России составляет около 400 млн. тонн условного топлива в год, что составляет не менее 40% внутреннего потребления энергии в стране. Одна треть энергосбережения находится в ТЭК, особенно в системах теплоснабжения. Затраты органического топлива на теплоснабжение составляют более 40% от всего используемого в стране, т.е. почти столько же, сколько тратится на все остальные отрасли промышленности, транспорт и т.д. Потребление топлива на нужды теплоснабжения сопоставимо со всем топливным экспортом страны.

Экономию тепловой энергии в сфере теплоснабжения можно достичь как за счет совершенствования источников тепловой энергии, тепловых сетей, теплопотребляющих установок, так и за счет улучшения характеристик отапливаемых объектов, зданий и сооружений.

Проблема обеспечения тепловой энергией городов России, в связи с суровыми климатическими условиями, по своей значимости сравнима с проблемой обеспечения населения продовольствием и является задачей государственной важности.

Работа «Разработка схемы теплоснабжения с выполнением ее электронной модели в административных границах поселка Бор Туруханского района на период 2014 – 2029 гг.» (далее – Схема теплоснабжения) выполняется в соответствии с техническим заданием во исполнение Федерального закона от 27.07.2010 г. № 190-ФЗ «О теплоснабжении», устанавливающего статус схемы теплоснабжения как документа, содержащего предпроектные материалы по обоснованию эффективного и безопасного функционирования системы теплоснабжения, ее развития с учетом правового регулирования в области энергосбережения и повышения энергетической эффективности.

Схема теплоснабжения – документ, содержащий материалы по обоснованию эффективного и безопасного функционирования системы теплоснабжения, ее развития с учетом правового регулирования в области энергосбережения и повышения энергетической эффективности.

Схема разрабатывается на основе анализа фактических тепловых нагрузок потребителей с учетом перспективного развития, оценки состояния существующих источников тепла и тепловых сетей и возможности их дальнейшего использования, рассмотрения вопросов надежности, экономичности системы теплоснабжения. Схема теплоснабжения разрабатывается на 15 лет, в

том числе на начальный период в 5 лет и на последующие пятилетние периоды с расчетным сроком до 2029 года.

Целью разработки схемы теплоснабжения является формирование основных направлений и мероприятий по развитию населенного пункта, обеспечивающих надежное удовлетворение спроса на тепловую энергию (мощность) и теплоноситель наиболее экономичным способом при минимальном воздействии на окружающую среду.

Схема теплоснабжения поселка Бор Туруханского района Красноярского края на 2014 – 2018 гг. и на период до 2029 г. разработана в соответствии с муниципальным контрактом № 118623 от 26.10.2014 г., шифр СМ.118623-14.ТС «Выполнение работ по разработке Схем теплоснабжения поселка Бор Туруханского района Красноярского края на 2014 – 2018 гг. и на период до 2029 года», заключенного между Администрацией Борского сельсовета и ООО ИЦ «СибМир».

Основанием для разработки схемы теплоснабжения поселка Бор являются:

- Федеральный закон от 27.07.2010 года № 190-ФЗ «О теплоснабжении»;
- Техническое задание на разработку схемы теплоснабжения на период 2014-2018 гг. и до 2029 г.

Основными нормативными документами при разработке схемы являются:

- Постановление Правительства РФ от 22.02.2012 г. № 154 «О требованиях к схемам теплоснабжения, порядку их разработки и утверждения»;
 - Федеральный закон от 07.12.2011 г. № 416-ФЗ «О водоснабжении и водоотведении»;
- Федеральный закон от 07.12.2011 г. № 417-ФЗ «О внесении изменений в отдельные законодательные акты Российской Федерации в связи с принятием Федерального закона «О водоснабжении и водоотведении»:
- Постановление Правительства РФ от 08.08.2012 г. № 808 «Об организации теплоснабжения в РФ и о внесении изменений в некоторые акты Правительства РФ»;
- Приказ Минэнерго России № 565, Минрегионразвития № 667 от 29.12.2012 г. «Об утверждении методических рекомендаций по разработке схем теплоснабжения»;
 - СП 124.13330.2012. «Тепловые сети. Актуализированная редакция СНиП 41-02-2003»;
 - СП 41-101-95 «Проектирование тепловых пунктов»;
- Методические основы разработки схем теплоснабжения поселений и промышленных узлов Российской федерации. РД-10-ВЭП.

В качестве технической базы для разработки схемы теплоснабжения Заказчиком была предоставлена следующая информация:

- Генеральный план Муниципального образования поселка Бор Туруханского района

Красноярского края;

- эксплуатационная документация (утвержденный температурный график источников тепловой энергии, данные по присоединенным тепловым нагрузкам потребителей тепловой энергии и т.п.);
 - конструктивные данные по видам прокладки тепловых сетей и их конфигурация;
- данные технологического и коммерческого учета отпуска и потребления тепловой энергии, теплоносителя;
- документы по хозяйственной и финансовой деятельности (действующие нормативы, тарифы и их составляющие, данные потребления ТЭР на собственные нужды и т.д.);
 - статистическая отчетность ОАО «Туруханскэнерго».

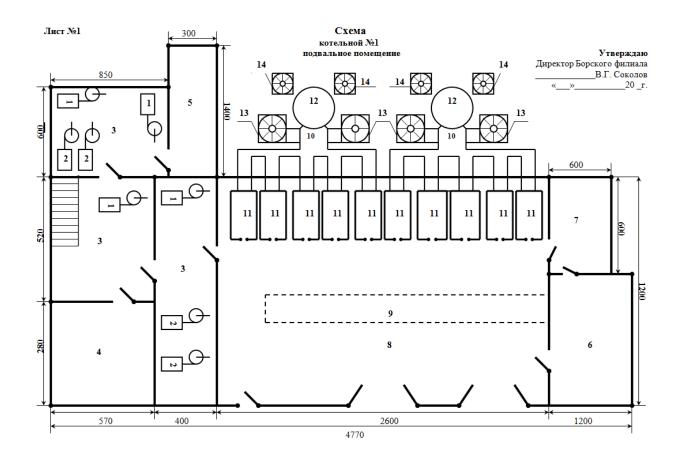
ИСТОЧНИКИ ТЕПЛОВОЙ ЭНЕРГИИ

Теплоснабжение потребителей тепловой энергии п. Бор осуществляется от четырех котельнах: котельная №1, котельная №2, котельная №4.

Котельные предназначены для выработки тепловой энергии на нужды отопления и горячего водоснабжения объектов жилого сектора, социально-бытового и производственного назначения.

1. Котельная №1

Установленная тепловая мощность котельной № 1 составляет 13,5 Гкал/ч (15,66 МВт). Располагаемая мощность котельной -8,04 Гкал/ч.


Теплоснабжающей организацией является ОАО «Туруханскэнерго».

Котельная расположена по адресу ул. Лесная, 58. Дата ввода в эксплуатацию здания котельной – 1978 г.

Основным видом топлива котельной является каменный уголь. Аварийное топливо не предусмотрено.

Схема котельной №1 представлена на рисунке 1.1

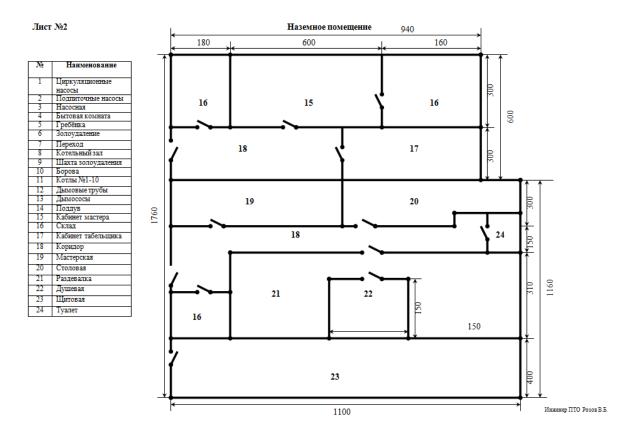


Рисунок 1.1 – Схема котельной №1

Котельная №1 оборудована котлами КВр-1,45 и КВр-1,16 производства ООО «Завод котельного оборудования ЭнергоРесурс». Котел КВр1,16 предназначен для нагрева подпиточной воды до 25-30°C. В таблице 1.1 приведены данные о котельном оборудовании, установленном на котельной №1.

Таблица 1.1. Состав котельного оборудования котельной №1

№ п.п.	Источник тепловой энергии	Марка котла	Коли- че- ство, шт.	УТМ, Гкал/ ч	Паспорт- ный КПД, %	Фактиче- ский КПД, %	Год ввода в эксплу- атацию	Техническое состояние (рабо-та/резерв)
1	Котельная №1	КВр-1,45	10	1,25	85	85	5 x 2012г. 5 x 2013г.	работа/ резерв
2		KBp-1,16	1	1,0	85	85	2013	работа

В таблице 1.2 представлен состав оборудования насосных групп котельной №1.

Таблица 1.2. Состав оборудования насосных групп котельной №1

Источник тепловой энергии	шие	Марка оборудования	Ко- личе- ство, шт.	Мощ- ность, кВт	По- дача, м ³ /ч	На- пор, м в.ст.	Год ввода в эксплуата- цию	Техническое состояние (рабо-та/резерв)
Котель-	Циркуляци- онные	1 Д 630-90б 1 Д 315-71A	2	55 45	500 300	60 60	2008	работа/ резерв
	Подпиточ-	К 20/30	2	4	20	30	2005	работа/ ре-
		K 50/80 (K 80-50-200a)	2	11	45	40	2007	зерв

Химводоочистка на котельной отсутствует. Для запаса подпиточной воды установлен резервуар $V=60~{\rm M}^3$.

В таблице 1.3 приведены данные о тягодутьевом оборудовании котельном оборудовании, установленном на котельной №1.

Таблица 1.3. Тягодутьевое оборудование котельной №1

Наименова- ние	Тип устройства (марка)	уста- 3-ки	Кол-во	Техническая хар	рактерист	тика	Электродвигатель		
		Год ус		Производитель- ность,м ³ /ч	Напор, Па	Тип	Мощность, кВт	Скорость, об/мин	
Дымосос котла	ДН-11,2	2008	4	27650	2760	_	45	1500	
Дутьевой вентилятор котла	ДН-9	2000	4	14650	1780	_	15	1500	

Для отвода дымовых газов установлены две стальные дымовые трубы. Первая — высотой $21\,\mathrm{m}$, диаметром $1,1\,\mathrm{m}$, дата ввода дымовой трубы в эксплуатацию — $2009\,\mathrm{r}$. Вторая — высотой $18\,\mathrm{m}$, диаметром $0,8\,\mathrm{m}$, дата ввода дымовой трубы в эксплуатацию — $1996\,\mathrm{r}$.

Присоединенная тепловая нагрузка по данным на 2014 год составляет 4,89361 Гкал/ч и представлена в таблице 1.4 с разбивкой по видам теплопотребления.

Таблица 1.4. Присоединенные тепловые нагрузки котельной №1 по состоянию на 2014 г.

Вид теплопотребления	Нагрузка, Гкал/ч
Отопление	4,6402
Вентиляция	_
ГВС	0,25341
Итого:	4,89361

Основные показатели котельной №1 сведены в таблицу 1.5.

Таблица 1.5. Основные показатели котельной №1

Перечень	Котельная №1		
Температурный график, t_1 / t_2 , ${}^0 C$	82 / 61		
Ограничения тепловой мощности	нет данных		
Год ввода в эксплуатацию теплофикационного оборудования	2012, 2013,2014		
Год последнего освидетельствования при допуске в эксплуатацию после ремонтов	нет данных		
Способ регулирования отпуска тепловой энергии	качественное		
Схема теплоснабжения	зависимая		
Способ учета тепла отпущенного в тепловые сети	расчетный		
Статистика отказов и восстановлений оборудования источников тепловой энергии	нет данных		
Предписания надзорных органов по запрещению дальнейшей эксплуатации источника тепловой энергии	нет данных		

Данные об объеме потребления тепловой энергии представлены в таблице 1.6.

Таблица 1.6. Объем потребления тепловой энергии потребителями от котельной №1

Источник тепловой энергии	Установленная мощность, Гкал/ч	Располагаемая мощность, Гкал/ч	Собственные нужды, Гкал/ч	Потери тепловой энергии в тепловых сетях, Гкал/ч	Тепловая мощность нетто, Гкал/ч	Суммарная присо- единенная тепловая нагрузка, Гкал/ч	Присоединенная тепловая нагрузка на отопление, Гкал/ч	Присоединенная тепловая нагрузка на ГВС, Гкал/ч в	Резерв/дефицит тепловой мощности нетто, Гкал/ч
Котельная №1	13,5	8,04	0,13	0,74872	7,91	4,89361	4,6402	0,25341	2,26767

Из таблицы 1.6 видно, что на котельной №1 дефицита тепловой мощности не наблюдается.

Мощность источника тепловой энергии нетто — величина, равная располагаемой мощности источника тепловой энергии за вычетом тепловой энергии на собственные и хозяйственные нужды, составляет 7,91.

Схема теплоснабжения – двухтрубная, зависимая.

Котельные ОАО «Туруханскэнерго» работают по утвержденному температурному графику 82 / 61 °C, представленному на рисунке 1.2. Качественное регулирование, т.е. изменение температуры теплоносителя в зависимости от температуры наружного воздуха на котельной, производится вручную.

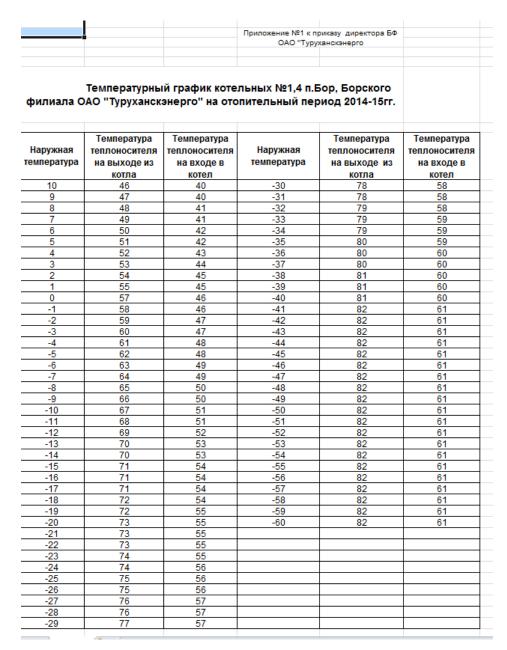


Рисунок 1.2 – Температурный график котельных ОАО «Туруханскэнерго»

У потребителя должен поддерживаться температурный график 95/70 °C, и все расчеты выполнены на данный температурный график.

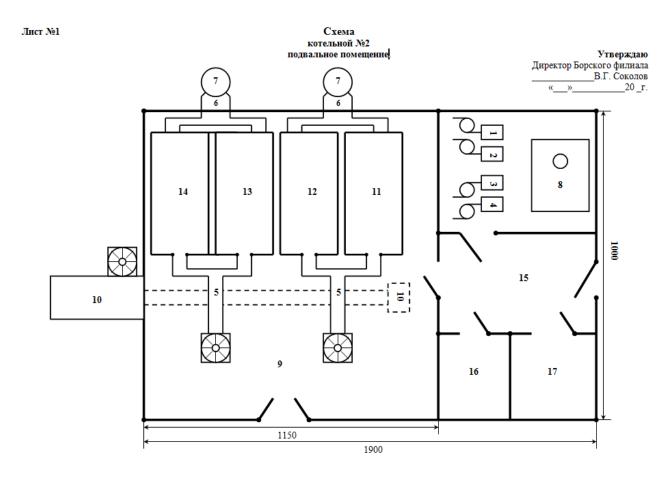
Данные о расходе теплоносителя на котельной №1 представлены в таблице 1.7.

Таблица 1.7. Расход теплоносителя на котельной №1

Источник тепло- вой энергии	Температур-		Расход то	еплоносител	я, м ³ /ч	
	ный график $t_1/t_2,{}^{ m o}{ m C}$	на нужды отопления	на нужды ГВС	потери в сетях	собствен- ные нужды	всего
Котельная №1	82 / 61	220,96	4,11	35,65	6,19	266,91
	95 / 70	185,61	3,70	29,95	5,20	224,46

2. Котельная №2

Установленная тепловая мощность котельной № 2 составляет 3,2 Гкал/ч (3,72 МВт). Располагаемая мощность котельной -2,32 Гкал/ч.


Теплоснабжающей организацией является ОАО «Туруханскэнерго».

Котельная расположена по адресу ул. Зеленая, 1A. Дата ввода в эксплуатацию здания котельной – 1981 г.

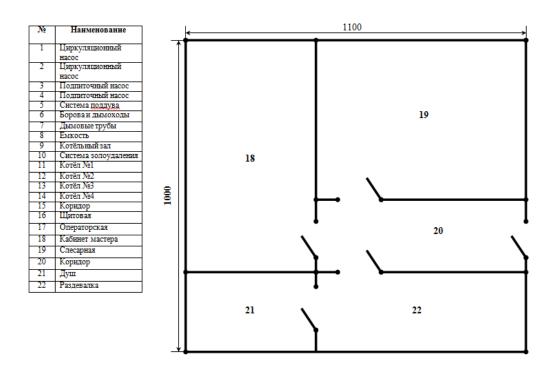

Основным видом топлива котельной является каменный уголь. Аварийное топливо не предусмотрено.

Схема котельной №2 представлена на рисунке 1.3

Лист №2 Наземное помещение

Инженер ПТО Розов В.Б.

Рисунок 1.3 –Схема котельной №2

Котельная №2 оборудована котлами КВр-1,16 производства ООО «Завод котельного оборудования ЭнергоРесурс» стальными сварными котлами собственного изготовления. В таблице 1.8 приведены данные о котельном оборудовании, установленном на котельной №2.

Таблица 1.8. Состав котельного оборудования котельной №2

№ п.п.	Источник тепловой энергии	Марка котла	Коли- че- ство, шт.	УТМ, Гкал/ ч	Паспорт- ный КПД, %	Фактиче- ский КПД, %	Год ввода в эксплу- атацию	Техническое состояние (рабо-та/резерв)
1		KBp-1,16	2	1,0	85	78	2012	
2	Котельная №2	Стальной сварной собственного изготовления	2	0,6	_	60	2005	работа/ резерв

В таблице 1.9 представлен состав оборудования насосных групп котельной №2.

Таблица 1.9. Состав оборудования насосных групп котельной №2

Источник тепловой энергии	ние -	Марка оборудования	Ко- личе- ство, шт.	Мощ- ность, кВт	По- дача, м ³ /ч	Напор, м в.ст.	Год ввода в эксплуа- тацию	Техническое состояние (рабо-та/резерв)
Котель-	Циркуляци- онные	K 150-125- 315	2	30	200	32	2005	работа/ резерв
ная №2	Подпиточ- ные	K 50/30	2	7,5	50	30	2006	работа/ резерв

Химводоочистка на котельной отсутствует. Для запаса подпиточной воды на котельной предусмотрен резервуар $V=20~{\rm m}^3$.

Дымососы на котельной отсутствуют. Удаление дымовых газов осуществляется за счет самотяги дымовых труб. Установлены две стальные дымовые трубы. Первая — высотой 23 м, диаметром 0,6 м, дата ввода дымовой трубы в эксплуатацию — 1994 г. Вторая — высотой 23 м, диаметром 0,7 м, дата ввода дымовой трубы в эксплуатацию — 2000 г.

На котельной установлены два крышных вентилятора ВКР-8 производства ЗАО «Крюковский вентиляторный завод» производительностью $4000 \text{ м}^3/\text{ч}$.

Присоединенная тепловая нагрузка по данным на 2014 год составляет 1,67596 Гкал/ч и представлена в таблице 1.10 с разбивкой по видам теплопотребления.

Таблица 1.10. Присоединенные тепловые нагрузки котельной №2 по состоянию на 2014 г.

Вид теплопотребления	Нагрузка, Гкал/ч
Отопление	1,6025
Вентиляция	_
ГВС	0,07346
Итого:	1,67596

Основные показатели котельной №2 сведены в таблицу 1.11.

Таблица 1.11. Основные показатели котельной №2

Перечень	Котельная №2
Температурный график, t_1 / t_2 , ${}^0 C$	82 / 61
Ограничения тепловой мощности	нет данных
Год ввода в эксплуатацию теплофикационного оборудования	1997, 2012
Год последнего освидетельствования при допуске в эксплуатацию после ремонтов	нет данных
Способ регулирования отпуска тепловой энергии	качественное
Схема теплоснабжения	зависимая
Способ учета тепла отпущенного в тепловые сети	расчетный
Статистика отказов и восстановлений оборудования источников тепловой энергии	нет данных
Предписания надзорных органов по запрещению дальнейшей эксплуатации источника тепловой энергии	нет данных

Данные об объеме потребления тепловой энергии представлены в таблице 1.12.

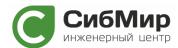


Таблица 1.12. Объем потребления тепловой энергии потребителями от котельной №2

Источник тепловой энергии	Установленная мощность, Гкал/ч	Располагаемая мощность, Гкал/ч	Собственные нужды, Гкал/ч	Потери тепловой энергии в тепловых сетях, Гкал/ч	Тепловая мощность нетто, Гкал/ч	Суммарная присо- единенная тепловая нагрузка, Гкал/ч	Присоединенная тепловая нагрузка на отопление, Гкал/ч	Присоединенная тепловая нагрузка на ГВС, Гкал/ч в	Резерв/дефицит тепловой мощности нетто, Гкал/ч
Котельная №2	3,2	2,32	0,039	0,25642	2,281	1,67596	1,6025	0,07346	0,34862

Из таблицы 1.12 видно, что на котельной №2 дефицита тепловой мощности не наблюдается.

Мощность источника тепловой энергии нетто — величина, равная располагаемой мощности источника тепловой энергии за вычетом тепловой энергии на собственные и хозяйственные нужды, составляет 2,281.

Схема теплоснабжения – двухтрубная, зависимая.

Котельные ОАО «Туруханскэнерго» работают по утвержденному температурному графику 82 / 61 °C, представленному на рисунке 1.4. Качественное регулирование, т.е. изменение температуры теплоносителя в зависимости от температуры наружного воздуха на котельной, производится вручную.

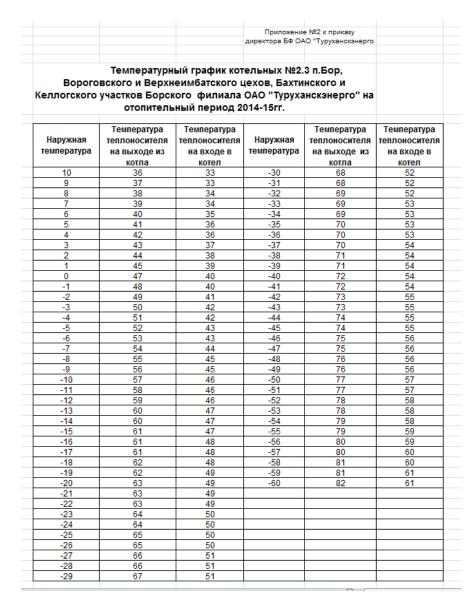


Рисунок 1.4 – Температурный график котельных ОАО «Туруханскэнерго»

У потребителя должен поддерживаться температурный график 95/70 °C, и все расчеты выполнены на данный температурный график.

Данные о расходе теплоносителя на котельной №2 представлены в таблице 1.13.

Таблица 1.13. Расход теплоносителя на котельной №2

Источник тепло-	Температур-		Расход то	еплоносител	я, м ³ /ч	
вой энергии	ный график t_1/t_2 , °C	на нужды отопления	на нужды ГВС	потери в сетях	собствен- ные нужды	всего
Marayy yag Ma2	82 / 61	76,31	1,30	12,21	1,86	91,68
Котельная №2	95 / 70	64,10	1,17	10,26	1,56	77,09

3. Котельная №3

Установленная тепловая мощность котельной № 3 составляет 2,8 Гкал/ч (3,26 МВт). Располагаемая мощность котельной -2,34 Гкал/ч.

Теплоснабжающей организацией является ОАО «Туруханскэнерго».

Котельная расположена по адресу ул. Советская, 2A. Дата ввода в эксплуатацию здания котельной – 1968 г.

Основным видом топлива котельной является каменный уголь. Аварийное топливо не предусмотрено.

Схема котельной №3 представлена на рисунке 1.5

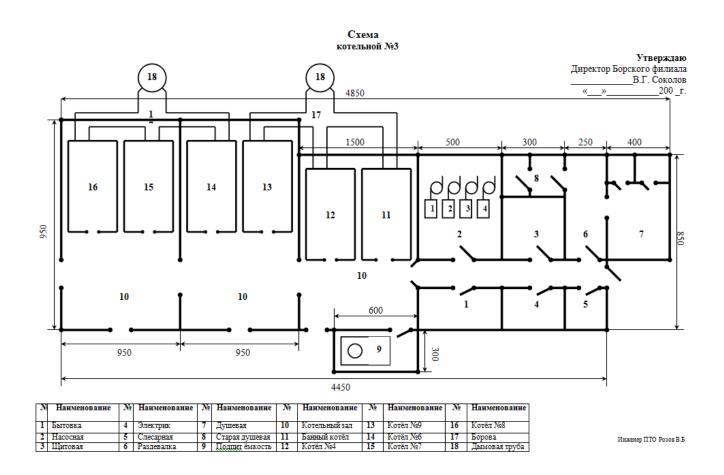


Рисунок 1.5 –Схема котельной №3

Котельная №3 оборудована стальными сварными котлами собственного изготовления. В таблице 1.14 приведены данные о котельном оборудовании, установленном на котельной №3.

Таблица 1.14. Состав котельного оборудования котельной №3

№ п.п.	Источник тепловой энергии	Марка котла	Коли- че- ство, шт.	УТМ, Гкал/ ч	Паспорт- ный КПД, %	Фактиче- ский КПД, %	Год ввода в эксплу- атацию	Техническое состояние (рабо-та/резерв)
2	Котельная №3	Стальной сварной собственного изготовления	5	0,56	-	60	2 x 1997 1 x 2002 2 x 2008	работа/ резерв

В таблице 1.15 представлен состав оборудования насосных групп котельной №3.

Таблица 1.15. Состав оборудования насосных групп котельной №3

Источник тепловой энергии	ние	Марка оборудования	Ко- личе- ство, шт.	Мощ- ность, кВт	По- дача, м ³ /ч	Напор, м в.ст.	Год ввода в эксплуа- тацию	Техническое состояние (рабо-та/резерв)
Котель-	Циркуляци- онные	К 160/30	2	30	160	30	2004	работа/ резерв
ная №2	Подпиточ- ные	K 20/30	2	4	20	30	2006	работа/ резерв

Химводоочистка на котельной отсутствует. Для запаса подпиточной воды на котельной предусмотрена резервуар $V=25~{\rm m}^3$.

Тягодутьевое оборудование на котельной отсутствуют. Удаление дымовых газов осуществляется за счет самотяги дымовых труб. Установлены три стальные дымовые трубы. Первая — высотой 25 м, диаметром 0,7 м, дата ввода дымовой трубы в эксплуатацию — 1984 г. Вторая — высотой 20 м, диаметром 0,6 м, дата ввода дымовой трубы в эксплуатацию — 2009 г. Третья — высотой 25 м, диаметром 0,6 м, дата ввода дымовой трубы в эксплуатацию — 2002 г.

Присоединенная тепловая нагрузка по данным на 2014 год составляет 1,84184 Гкал/ч и представлена в таблице 1.16 с разбивкой по видам теплопотребления.

Таблица 1.16. Присоединенные тепловые нагрузки котельной №3 по состоянию на 2014 г.

Вид теплопотребления	Нагрузка, Гкал/ч				
Отопление	1,7365				
Вентиляция	_				
ГВС	0,10534				
Итого:	1,84184				

Основные показатели котельной №3 сведены в таблицу 1.17.

Таблица 1.17. Основные показатели котельной №3

Перечень	Котельная №3
Температурный график, t_1 / t_2 , ${}^0 C$	82 / 61
Ограничения тепловой мощности	нет данных
Год ввода в эксплуатацию теплофикационного оборудования	1997, 2002, 2008
Год последнего освидетельствования при допуске в эксплуатацию после ремонтов	нет данных
Способ регулирования отпуска тепловой энергии	качественное
Схема теплоснабжения	зависимая
Способ учета тепла отпущенного в тепловые сети	расчетный
Статистика отказов и восстановлений оборудования источников тепловой энергии	нет данных
Предписания надзорных органов по запрещению дальнейшей эксплуатации источника тепловой энергии	нет данных

Данные об объеме потребления тепловой энергии представлены в таблице 1.18.

Таблица 1.18. Объем потребления тепловой энергии потребителями от котельной №3

Источник тепловой энергии	Установленная мощность, Гкал/ч	Располагаемая мощность, Гкал/ч	Собственные нужды, Гкал/ч	Потери тепловой энергии в тепловых сетях, Гкал/ч	Тепловая мощность нетто, Гкал/ч	Суммарная присо- единенная тепловая нагрузка, Гкал/ч	Присоединенная тепловая нагрузка на отопление, Гкал/ч	Присоединенная тепловая нагрузка на ГВС, Гкал/ч в	Резерв/дефицит тепловой мощности нетто, Гкал/ч
Котельная №3	2,8	2,34	0,13	0,2818	2,21	1,84184	1,7365	0,10534	0,08636

Из таблицы 1.18 видно, что на котельной №3 дефицита тепловой мощности не наблюдается.

Мощность источника тепловой энергии нетто — величина, равная располагаемой мощности источника тепловой энергии за вычетом тепловой энергии на собственные и хозяйственные нужды, составляет 2,21.

Схема теплоснабжения – двухтрубная, зависимая.

Котельные ОАО «Туруханскэнерго» работают по утвержденному температурному графику 82 / 61 °C, представленному на рисунке 1.8. Качественное регулирование, т.е. изменение температуры теплоносителя в зависимости от температуры наружного воздуха на котельной, производится вручную.

У потребителя должен поддерживаться температурный график 95/70 °C, и все расчеты выполнены на данный температурный график.

Данные о расходе теплоносителя на котельной №3 представлены в таблице 1.19.

Таблица 1.19. Расход теплоносителя на котельной №3

Источник тепло-	Температур-		Расход то	еплоносител	я, м ³ /ч	
вой энергии	ный график t_1/t_2 , °C	на нужды отопления	на нужды ГВС	потери в сетях	собствен- ные нужды	всего
Котельная №3	82 / 61	82,69	1,14	13,42	6,19	103,44
	95 / 70	69,46	1,03	11,27	5,20	86,96

4. Котельная №4

Установленная тепловая мощность котельной № 3 составляет 1,8 Гкал/ч (3,72 МВт). Располагаемая мощность котельной -1,08 Гкал/ч.

Теплоснабжающей организацией является ОАО «Туруханскэнерго».

Котельная расположена по адресу ул. Лесная, 84. Дата ввода в эксплуатацию здания котельной – 1979 г.

Основным видом топлива котельной является каменный уголь. Аварийное топливо не предусмотрено.

Схема котельной №3 представлена на рисунке 1.6

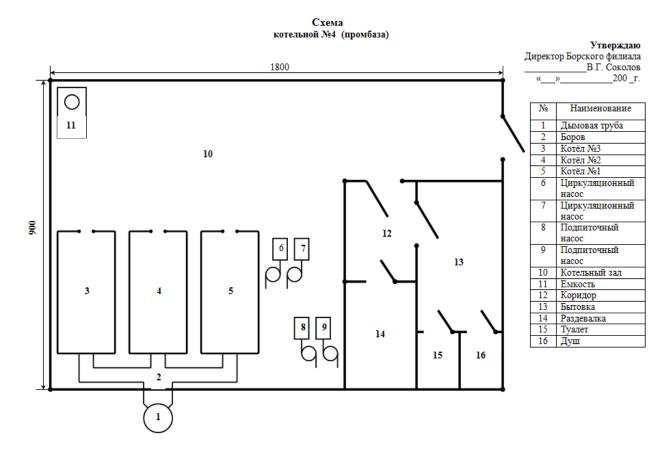


Рисунок 1.6 –Схема котельной №4

Котельная №4 оборудована стальными сварными котлами собственного изготовления. В таблице 1.20 приведены данные о котельном оборудовании, установленном на котельной №4.

Таблица 1.20. Состав котельного оборудования котельной №4

№ п.п.	Источник тепловой энергии	Марка котла	Коли- че- ство, шт.	УТМ, Гкал/ ч	Паспорт- ный КПД, %	Фактиче- ский КПД, %	Год ввода в эксплу- атацию	Техническое состояние (рабо-та/резерв)
2	Котельная №4	Стальной сварной собственного изготовления	3	0,6	_	60	2004	работа/ резерв

В таблице 1.21 представлен состав оборудования насосных групп котельной №3.

Таблица 1.21. Состав оборудования насосных групп котельной №3

Источник тепловой энергии	Наименова- ние насосной группы	Марка оборудования	Ко- личе- ство, шт.	Мощ- ность, кВт	По- дача, м ³ /ч	Напор, м в.ст.	Год ввода в эксплуа- тацию	Техническое состояние (рабо-та/резерв)
котель-	Циркуляци- онные	К 160/30	2	30	160	30	2004	работа/ резерв
ная №4	Подпиточ- ные	K 20/30	2	4	20	30	2004	работа/ резерв

Химводоочистка на котельной отсутствует. Для запаса подпиточной воды на котельной предусмотрен резервуар $V=4~{\rm m}^3$.

Тягодутьевое оборудование на котельной отсутствуют. Удаление дымовых газов осуществляется за счет самотяги дымовой трубы. Установлены одна стальная дымовая труба высотой $17 \, \text{м}$, диаметром $0.6 \, \text{м}$, дата ввода дымовой трубы в эксплуатацию $-2008 \, \text{г}$.

Присоединенная тепловая нагрузка по данным на 2014 год составляет 0,85819 Гкал/ч и представлена в таблице 1.22 с разбивкой по видам теплопотребления.

Таблица 1.22. Присоединенные тепловые нагрузки котельной №4 по состоянию на 2014 г.

Вид теплопотребления	Нагрузка, Гкал/ч		
Отопление	0,8553		
Вентиляция	_		
ГВС	0,00289		
Итого:	0,85819		

Основные показатели котельной №4 сведены в таблицу 1.23.

Таблица 1.23. Основные показатели котельной №4

Перечень	Котельная №3		
Температурный график, t_1 / t_2 , ${}^0 C$	82 / 61		
Ограничения тепловой мощности	нет данных		
Год ввода в эксплуатацию теплофикационного оборудования	1997, 2002, 2008		

Год последнего освидетельствования при допуске в эксплуатацию после ремонтов	нет данных
Способ регулирования отпуска тепловой энергии	качественное
Схема теплоснабжения	зависимая
Способ учета тепла отпущенного в тепловые сети	расчетный
Статистика отказов и восстановлений оборудования источников тепловой энергии	нет данных
Предписания надзорных органов по запрещению дальнейшей эксплуатации источника тепловой энергии	нет данных

Данные об объеме потребления тепловой энергии представлены в таблице 1.24. Таблица 1.24. Объем потребления тепловой энергии потребителями от котельной №4

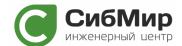
Источник тепловой энергии	Установленная мощность, Гкал/ч	Располагаемая мощность, Гкал/ч	Собственные нужды, Гкал/ч	Потери тепловой энергии в тепловых сетях, Гкал/ч	Тепловая мощность нетто, Гкал/ч	Суммарная присо- единенная тепловая нагрузка, Гкал/ч	Присоединенная тепловая нагрузка на отопление, Гкал/ч	Присоединенная тепловая нагрузка на ГВС, Гкал/ч в	Резерв/дефицит тепловой мощности нетто, Гкал/ч
Котельная №4	1,8	1,08	0,01	0,1313	1,07	0,85819	0,8553	0,00289	0,08051

Из таблицы 1.24 видно, что на котельной №4 дефицита тепловой мощности не наблюдается.

Мощность источника тепловой энергии нетто — величина, равная располагаемой мощности источника тепловой энергии за вычетом тепловой энергии на собственные и хозяйственные нужды, составляет 1,07.

Схема теплоснабжения – двухтрубная, зависимая.

Котельные ОАО «Туруханскэнерго» работают по утвержденному температурному графику 82 / 61 °C, представленному на рисунке 1.6. Качественное регулирование, т.е. изменение температуры теплоносителя в зависимости от температуры наружного воздуха на котельной, производится вручную.


У потребителя должен поддерживаться температурный график 95/70 °C, и все расчеты выполнены на данный температурный график.

Данные о расходе теплоносителя на котельной №4 представлены в таблице 1.25.

Таблица 1.25. Расход теплоносителя на котельной №4

Источник тепло- вой энергии	Температур-	Расход теплоносителя, м ³ /ч					
	ный график $t_1/t_2,{}^{ m o}{ m C}$	на нужды отопления	на нужды ГВС	потери в сетях	собствен- ные нужды	всего	
Котельная №4	82 / 61	40,73	0,01	6,25	0,48	47,47	
	95 / 70	34,21	0,01	5,25	0,40	39,87	

СПИСОК ИСПОЛЬЗОВАННОЙ ЛИТЕРАТУРЫ

- 1. Методические основы разработки схем теплоснабжения поселений и промышленных узлов Российской федерации. РД-10-ВЭП.
- 2. Расчет систем централизованного теплоснабжения с учетом требований надежности. РД-7-ВЭП.
- 3. Надежность систем теплоснабжения / Е.В.Сеннова, А.В.Смирнов, А.А.Ионин и др.; Отв. ред. Е.В. Сеннова. Новосибирск: Наука, 2000. 350 с.
 - 4. Надежность систем тепловых сетей / А.А. Ионин. М.: Стройиздат, 1989. 268 с., ил.
- 5. Федеральный закон от 23.11.2009 г РФ № 261 «Об энергосбережении и повышении энергетической эффективности и о внесении изменений в отдельные законодательные акты Российской Федерации» в ред. от 28.12.2013 г.
 - 6. Федеральный закон от 27.07.2010 г № 190-ФЗ «О теплоснабжении».
- 7. Постановление Правительства РФ от 22.02.2012 г. № 154 «О требованиях к схемам теплоснабжения, порядку их разработки и утверждения».
 - 8. Федеральный закон от 07.12.2011 г. № 416-ФЗ «О водоснабжении и водоотведении».
- 9. Федеральный закон от 07.12.2011 г. № 417-ФЗ «О внесении изменений в отдельные законодательные акты Российской Федерации в связи с принятием Федерального закона «О водоснабжении и водоотведении».
- 10. Постановление Правительства РФ от 08.08.2012 г. № 808 «Об организации теплоснабжения в РФ и о внесении изменений в некоторые акты Правительства РФ».
- 11. Приказ Минэнерго России № 565, Минрегионразвития № 667 от 29.12.2012 г. «Об утверждении методических рекомендаций по разработке схем теплоснабжения».
 - 12. СП 124.13330.2012. «Тепловые сети. Актуализированная редакция СНиП 41-02-2003».
 - 13. СП 41-101-95 «Проектирование тепловых пунктов».
- 14. СП 42.133330.2011 «Градостроительство. Планировка и застройка городских и сельских поселений».
 - 15. СП 60.13330.2012 «Отопление, вентиляция и кондиционирование воздуха».
 - 16. СП 54.13330.2011 «Здания жилые многоквартирные».
 - 17. СП 89.13330.2012 «Котельные установки».
 - 18. ГОСТ 27.002-89 «Надежность в технике».
- 19. Теплоснабжение: Учебное пособие для студентов вузов/ В.Е. Козин, Т.А. Левина, А.П. Марков, И.Б. Пронина, В.А. Солемзин; М.:Высш. школа, 1980. 408 с., ил.